NATURE GEOSCIENCE | VOL 8 | APRIL 2015 | www.nature.com/naturegeoscience 261 C louds stimulate the human spirit. Although they have been recognized for centuries as harbingers of weather, only in recent decades have scientists begun to appreciate the role of clouds in determining the general circulation of the atmosphere and its susceptibility to change.Forming mostly in the updrafts of the turbulent and chaotic airflow, clouds embody the complex and multiscale organization of the atmosphere into dynamical entities, or storms. These entities mediate the radiative transfer of energy, distribute precipitation and are often associated with extreme winds. It has long been recognized that the water and heat transfer that clouds mediate plays a fundamental role in tropical circulations, and there is increasing evidence that they also influence extratropical circulations 1 . Globally, the impact of clouds on Earth's radiation budget -and hence surface temperatures -also depends critically on how clouds interact with one another and with larger-scale circulations 2 . Far from being passive tracers of a turbulent atmosphere, clouds thus embody processes that can actively control circulation and climate (Box 1).For practical reasons, early endeavours to understand climate deployed a 'divide and conquer' strategy in which efforts to understand clouds and convective processes developed separately from efforts to understand larger-scale circulations. Over time, a gap developed between the subdisciplines. But technological progress and conceptual advances have tremendously increased our capacity to observe and simulate the climate system, such that it is now possible to study more readily how small-scale convective processes -that is, clouds -couple to large-scale circulations (Box 2). Much as a new accelerator allows physicists to explore the implication of the interactions among forces acting over different length scales, these new capabilities are transforming how atmospheric scientists think about the interplay of clouds and climate. This offers a great opportunity not only to close the gap between scientific communities, but Fundamental puzzles of climate science remain unsolved because of our limited understanding of how clouds, circulation and climate interact. One example is our inability to provide robust assessments of future global and regional climate changes. However, ongoing advances in our capacity to observe, simulate and conceptualize the climate system now make it possible to fill gaps in our knowledge. We argue that progress can be accelerated by focusing research on a handful of important scientific questions that have become tractable as a result of recent advances. We propose four such questions below; they involve understanding the role of cloud feedbacks and convective organization in climate, and the factors that control the position, the strength and the variability of the tropical rain belts and the extratropical storm tracks.also to answer some of the most pressing questions about the fate of our pl...