In plants, aquaporins play a crucial role in regulating root water transport in response to environmental and physiological cues. Controls achieved at the post-translational level are thought to be of critical importance for regulating aquaporin function. To investigate the general molecular mechanisms involved, we performed, using the model species Arabidopsis, a comprehensive proteomic analysis of root aquaporins in a large set of physiological contexts. We identified nine physiological treatments that modulate root hydraulics in time frames of minutes (NO and H 2 O 2 treatments), hours (mannitol and NaCl treatments, exposure to darkness and reversal with sucrose, phosphate supply to phosphate-starved roots), or days (phosphate or nitrogen starvation). All treatments induced inhibition of root water transport except for sucrose supply to darkgrown plants and phosphate resupply to phosphatestarved plants, which had opposing effects. Using a robust label-free quantitative proteomic methodology, we identified 12 of 13 plasma membrane intrinsic protein (PIP) aquaporin isoforms, 4 of the 10 tonoplast intrinsic protein isoforms, and a diversity of post-translational modifications including phosphorylation, methylation, deamidation, and acetylation. A total of 55 aquaporin peptides displayed significant changes after treatments and enabled the identification of specific and as yet unknown patterns of response to stimuli. The data show that the regulation of PIP and tonoplast intrinsic protein abundance was involved in response to a few treatments (i.e. NaCl, NO, and nitrate starvation), whereas changes in the phosphorylation status of PIP aquaporins were positively correlated to changes in root hydraulic conductivity in the whole set of treatments The absorption of soil water by roots is crucial in order for plants to maintain their water status. Studies in various plant species have shown that the root water permeability (root hydraulic conductivity Lp r ) is constantly adjusted depending on the developmental stage of the plant, its nutritional or hormonal status, or multiple environmental stimuli (1). Despite their importance in plant growth and adaptation, these multiple responses have not been investigated in a single plant species yet. Aquaporins form a large class of channel proteins that facilitate the diffusion of water and small neutral solutes across cell membranes and, among many other functions, contribute to root water uptake (2, 3). Aquaporins are 25-to 30-kDa proteins with six membrane-spanning domains and five connecting loops (A-E), with N-and C-terminal tails exposed to the cytosol (4, 5). Plant aquaporins show a high multiplicity of isoforms. Thirty-five homologs belonging to four homology subclasses have been identified in Arabidopsis. The plasma membrane intrinsic proteins (PIPs) 1 (with 13 isoforms further subdivided into the PIP1 and PIP2 subgroups) and the tonoplast intrinsic proteins (TIPs) with 10 homologs are the most abundant aquaporins in the plasma membrane and the tonoplast, respectivel...