Abstract. Biological soil crusts (biocrusts) are key contributors to desert ecosystem functions; therefore, biocrust restoration following mechanical disturbance is imperative. In the Negev Desert hyperarid regions, phosphate mining has been practiced for over 60 years, destroying soil habitats, and fragmenting the landscape. To understand the effects of mining activity on soil health, we previously characterized the biocrust communities in four phosphate mining sites over spatial (post-mining and natural plots) and temporal (2–10 years since restoration) scales. We showed that bacterial abundance, richness, and diversity in natural plots were significantly higher than in post-mining plots, regardless of temporal scale. In this study, we selected one mining site and used DNA stable isotope probing (DNA-SIP) to identify which bacteria grow in post-mining and natural biocrusts. Since biocrust communities activate only after wetting, we incubated the biocrusts with H218O for 96 hours under ambient conditions. We then evaluated the physicochemical soil properties, chlorophyll a concentrations, activation, and functional potential of the biocrusts. The DNA-SIP assay revealed low bacterial activity in both plot types and no significant differences in the proliferated communities’ composition when comparing post-mining and natural biocrusts. We further found no significant differences in the microbial functional potential, photosynthetic rates, or soil properties. Our results suggest that growth of hyperarid biocrust bacteria after wetting is minimal. We hypothesize that due to the harsh climatic conditions, during wetting bacteria devote their meager resources to prepare for the coming drought, by focusing on damage repair, and organic compound synthesis and storage rather than on growth. These low growth rates contribute to the sluggish recovery of desert biocrusts following major disturbances such as mining. Therefore, our findings highlight the need for implementing active restoration practices following mining.