In this article, the influence of thermal conductivity on the dynamics of a rotating nanobeam is established in the context of nonlocal thermoelasticity theory. To this end, the governing equations are derived using generalized heat conduction including phase lags on the basis of the Euler–Bernoulli beam theory. The thermal conductivity of the proposed model linearly changes with temperature and the considered nanobeam is excited with a variable harmonic heat source and exposed to a time-dependent load with exponential decay. The analytic solutions for bending moment, deflection and temperature of rotating nonlocal nanobeams are achieved by means of the Laplace transform procedure. A qualitative study is conducted to justify the soundness of the present analysis while the impact of nonlocal parameter and varying heat source are discussed in detail. It also shows the way in which the variations of physical properties due to temperature changes affect the static and dynamic behavior of rotating nanobeams. It is found that the physical fields strongly depend on the nonlocal parameter, the change of the thermal conductivity, rotation speed and the mechanical loads and, therefore, it is not possible to neglect their effects on the manufacturing process of precise/intelligent machines and devices.