Wavefunctions restricted to electron-pair states are promising models to describe static/nondynamic electron correlation effects encountered, for instance, in bond-dissociation processes and transition-metal and actinide chemistry. To reach spectroscopic accuracy, however, the missing dynamic electron correlation effects that cannot be described by electron-pair states need to be included a posteriori. In this article, we extend the previously presented perturbation theory models with an Antisymmetric Product of 1-reference orbital Geminal (AP1roG) reference function that allow us to describe both static/nondynamic and dynamic electron correlation effects. Specifically, our perturbation theory models combine a diagonal and off-diagonal zero-order Hamiltonian, a single-reference and multi-reference dual state, and different excitation operators used to construct the projection manifold. We benchmark all proposed models as well as an a posteriori linearized coupled cluster correction on top of AP1roG against CR-CCSD(T) reference data for reaction energies of several closed-shell molecules that are extrapolated to the basis set limit. Moreover, we test the performance of our new methods for multiple bond breaking processes in the N2, C2, and BN dimers against MRCI-SD and MRCI-SD+Q reference data. Our numerical results indicate that the best performance is obtained from a linearized coupled cluster correction as well as second-order perturbation theory corrections employing a diagonal and off-diagonal zero-order Hamiltonian and a single-determinant dual state. These dynamic corrections on top of AP1roG allow us to reliably model molecular systems dominated by static/nondynamic as well as dynamic electron correlation.