In order to understand various aspects of radar wave propagation, a survey of electromagnetic wave behaviour relative to the geological characteristics of the formations prospected was undertaken. The sites chosen for the tests were a granite quarry and an underground schist working. By investigating an electrically resistive isotropic site and a conductive anisotropic site, it was demonstrated that non-conventional use of a radar system (antennae raised, various orientations of the transmitter/receiver, etc.) could improve data quality, and could allow information other than reflector depth to be collected (volume scattering intensity, isotropy, etc.). By studying wave propagation velocities, we underlined the difficulties encountered in establishing a velocity versus depth law, despite recourse to seismic data processing, such as NMO corrections. The results of field experiments, complemented by laboratory measurements of dielectric permittivities, clearly showed anisotropy effects: in the case of a path that is perpendicular to the schistosity plane, an electromagnetic wave propagates more slowly and is more attenuated than a wave parallel to the schistosity plane.