Background
Improvements to autologous fat grafting for soft tissue augmentation are needed to overcome the unpredictable volume retention. Approaches such as fat harvesting and processing, injection technique, preparation of the recipient site, and supplemental biologics are topics of ongoing research. Here, an energy-based device was investigated as a stimulatory tool for recipient site preparation for improving fat graft retention.
Objective
The objective was to measure the stimulatory responses in fat grafts after 4 weeks when using a helium-based radiofrequency device to pretreat the recipient tissue.
Methods
Using an autologous fat grafting mouse model, the inguinal fat pad was grafted in a small cranial pocket after either a saline injection alone (control) or a saline injection followed by pretreatment (treated). The fat pad was resected after 4 weeks, sectioned and stained with immunofluorescence markers to investigate tissue remodeling.
Results
Pretreatment resulted in higher viability of adipocytes, a higher concentration of viable ASCs in areas of adipose tissue regeneration, and localized macrophages in the areas of regeneration when compared to the control. There was no observable difference in vascularity or angiogenesis. The staining for ASCs was higher in the pretreated group in comparison with the control group (5.0% vs. 3.3%, p=0.36) when using a pixel classifier in QuPath in the viable adipose tissue regions.
Conclusions
The use of a helium-based radiofrequency device as a pretreatment tool appears to increase the viability of the adipose tissue likely due to higher concentration of ASCs. The apparent increase in viable ASCs may be due to enhanced proliferation or paracrine recruitment of these cells in response to the helium-based radiofrequency treatment.
No Level Assigned
This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Bullet List of Important Points:
Pretreatment of the fat graft recipient site increases the viability of the adipose tissue after 4 weeks in comparison with the control grafts.
The increased viability is likely due to the observed increase in adipose-derived stem cells in the pretreated group.
Pretreatment enhanced the adipose tissue remodeling as colocalization of adipose-derived stem cells and macrophages showed an active remodeling, whereas the control group exhibited more necrotic and fibrotic tissue.