2024
DOI: 10.1063/5.0205072
|View full text |Cite
|
Sign up to set email alerts
|

The revised Riemann–Hilbert approach to the Kaup–Newell equation with a non-vanishing boundary condition: Simple poles and higher-order poles

Yongshuai Zhang,
Deqin Qiu,
Shoufeng Shen
et al.

Abstract: With a non-vanishing boundary condition, we study the Kaup–Newell (KN) equation (or the derivative nonlinear Schrödinger equation) using the Riemann–Hilbert approach. Our study yields four types of Nth order solutions of the KN equation that corresponding to simple poles on or not on the ρ circle (ρ related to the non-vanishing boundary condition), and higher-order poles on or not on the ρ circle of the Riemann–Hilbert problem (RHP). We make revisions to the usual RHP by introducing an integral factor that ens… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 47 publications
0
0
0
Order By: Relevance