While microparticles can be removed by a filtration step at a drinking water treatment plant (DWTP), engineered nanoparticles (ENPs), which are widely used in industry, commerce and households, pose a major problem due to their special properties, e.g., size, reactivity and polarity. In addition, many ENPs exhibit toxic potential, which makes their presence in drinking water undesirable. Therefore, this study investigated the removal of ENPs in the laboratory and at a pilot-scale DWTP. Eight ENPs were synthesized and tested for stability in different types of water. Only three of them were stable in natural water: cetyltrimethylammonium bromide-coated gold (CTAB/AuNPs), polyvinylpyrrolidone-stabilized gold and silver nanoparticles (PVP/AuNPs, PVP/AgNPs). Their retention on quartz sand, silica gel and fresh anthracite was low, but CTAB/AuNPs could be retained on fresh river sand and thus should not overcome riverbank filtration, while PVP/AuNPs and PVP/AgNPs showed no retention and may be present in raw water. During ozonation, PVP/AuNPs remained stable while PVP/AgNPs were partially degraded. The advanced oxidation process (AOP) was less effective than ozone. PVP/AgNPs were almost completely retained on the pilot plant anthracite sand filter coated with manganese(IV) oxide and ferrihydrite from raw water treatment. PVP/AuNPs passed the filter with no retention. In contrast to PVP/AuNPs, PVP/AgNPs and CTAB/AuNPs were also retained on activated carbon. The integration of a flocculation step with iron(III) salts can improve ENP removal, with PVP/AuNPs requiring higher flocculant doses than PVP/AgNPs. PVP/AuNPs, in particular, are well-suited for testing the effectiveness of water treatment. Further data on the occurrence of stable ENPs in raw water and their behavior during water treatment are needed to perform a risk assessment and derive the measures.