We present Riemann problem governed by 2-D full Euler system in the Noble-Abel gas. Riemann data, consisting three constants, are distributed in three distinct regions with an assumption that two adjoining regions can be connected by only one planar elementary wave. We present criteria for existence of different configurations of elementary waves for isentropic, as well as full, Euler system. We also discuss the effect of the Noble-Abel gas and the angle of regions on elementary waves and corresponding stream curves.