1989
DOI: 10.5802/tsg.70
|View full text |Cite
|
Sign up to set email alerts
|

The Riemann-Roch theorem on algebraic curves

Abstract: Séminaire de Théorie spectrale et géométrie (Chambéry-Grenoble), 1988-1989, tous droits réservés. L'accès aux archives de la revue « Séminaire de Théorie spectrale et géométrie » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numéris… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2015
2015
2015
2015

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(3 citation statements)
references
References 1 publication
0
3
0
Order By: Relevance
“…In [BPS90], Brüning, Peyerimhoff and Schröder proved that h 0,0 s (X * ) − h 0,1 s (X * ) = m − g and h 0,0 w (X * ) − h 0,1 w (X * ) = m − g + deg Z − |Z| by computing the indices of the differential operators ∂ s and ∂ w . Schröder generalized this result for vector bundles in [Sch89].…”
Section: Thus We Can Assume That Cmentioning
confidence: 82%
See 2 more Smart Citations
“…In [BPS90], Brüning, Peyerimhoff and Schröder proved that h 0,0 s (X * ) − h 0,1 s (X * ) = m − g and h 0,0 w (X * ) − h 0,1 w (X * ) = m − g + deg Z − |Z| by computing the indices of the differential operators ∂ s and ∂ w . Schröder generalized this result for vector bundles in [Sch89].…”
Section: Thus We Can Assume That Cmentioning
confidence: 82%
“…The first part of Corollary 4.8 was discovered by Haskell [Has89], and from that one can deduce the second statement of Theorem 1.2 by use of L 2 -Serre duality. Moreover, Theorem 1.2 was proved in essence by Brüning, Peyerimhoff and Schröder in [BPS90] and [Sch89] by computing the indices of the ∂ w -and the ∂ s -operator.…”
Section: Introductionmentioning
confidence: 98%
See 1 more Smart Citation