“…It has very high carrier mobilities ( 200,000 ) [ [16] , [17] , [18] ], unusual linear dispersion around the Dirac point [ 19 , 20 ], ultrahigh thermal conductivities ( ) [ [21] , [22] , [23] ], room temperature ballistic carrier transport [ 24 , 25 ], large surface area (2630 ) [ [26] , [27] , [28] ], a Young's Modulus of 1 TPa [ 29 , 30 ], broadband optical absorbance (2.3%) [ [31] , [32] , [33] ], and a robust crystal structure, all of which reveal the material's high quality and suggest its prospects for future optoelectronic devices [ [34] , [35] , [36] ]. However, its use in optoelectronics is limited due to its zero bandgap and relatively poor structural tunability [ [37] , [38] , [39] ]. Therefore, several reports have established different approaches to induce a sizeable band gap and efficiently modulate the intrinsic properties of graphene by stacking configuration, mechanical strain, electric and magnetic fields, and heteroatom chemical doping via DFT methods for next-generation electronics with designer functionalities [ [40] , [41] , [42] ].…”