The planning of the surgical treatment in orthopedics, with the help of three-dimensional (3D) technologies, arouses an increasing scientific interest. Scientific literature describes some semi-automatic reconstructive attempts at fragmented bone fractures, but the matching algorithms presented are likely to improve. The aim of this paper is to develop a new method of aligning fragments of comminutive fractures. We have created a structured integration process and an alignment algorithm integrated in a clinical workflow for personalized surgical treatment of fractures. The provided solution is able to align the surfaces of bone fragments derived from the segmentation process of volumetric tomographic data. Positional uncertainties are eliminated interactively by the user, who selects the corresponding pairs of fracture surfaces. The final matching and the right alignment are performed automatically by the innovative alignment algorithm. The paper solves a challenging problem for the reconstruction of fractured bones, namely the choice of the optimal matching option from the situation in which surface portions of a fracture fragment correspond to multiple high fragments. The method is validated in practice for preoperative planning of a 49-year-old male patient who had a tibial plateau fracture of Schatzker type VI.