Quinoin is a type 1 ribosome-inactivating protein (RIP) we previously isolated from the seeds of pseudocereal quinoa (Chenopodium quinoa) and is known as a functional food for its beneficial effects on human health. As the presence of RIPs in edible plants could be potentially risky, here we further characterised biochemically the protein (complete amino acid sequence, homologies/differences with other RIPs and three-dimensional homology modeling) and explored its possible defensive role against pathogens. Quinoin consists of 254 amino acid residues, without cysteinyl residues. As demonstrated by similarities and homology modeling, quinoin preserves the amino acid residues of the active site (Tyr75, Tyr122, Glu177, Arg180, Phe181 and Trp206; quinoin numbering) and the RIP-fold characteristic of RIPs. The polypeptide chain of quinoin contains two N-glycosylation sites at Asn115 and Asp231, the second of which appears to be linked to sugars. Moreover, by comparative MALDI-TOF tryptic peptide mapping, two differently glycosylated forms of quinoin, named pre-quinoin-1 and pre-quinoin-2 (~0.11 mg/100 g and ~0.85 mg/100 g of seeds, respectively) were characterised. Finally, quinoin possesses: (i) strong antiviral activity, both in vitro and in vivo towards Tobacco Necrosis Virus (TNV); (ii) a growth inhibition effect on the bacterial pathogens of plants; and (iii) a slight antifungal effect against two Cryphonectria parasitica strains.