Arboviruses transmitted by mosquitoes are responsible for the death of millions of people each year. In addition to arboviruses, many insect-specific viruses (ISVs) have been discovered in mosquitoes in the last decade. ISVs, in contrast to arboviruses transmitted by mosquitoes to vertebrates, cannot replicate in vertebrate cells even when they are evolutionarily closely related to arboviruses. The alphavirus genus includes many arboviruses, although only a few ISVs have been discovered from this genus so far. Here, we investigate the interactions of a recently isolated insect-specific alphavirus, Agua-Salud alphavirus (ASALV), with its mosquito host.
RNAi is one of the essential antiviral responses against arboviruses, although there is little knowledge on the interactions of RNAi with ISVs. Through knock-down of transcripts of the different key RNAi pathway (siRNA, miRNA and piRNA) proteins, we show the antiviral role of Ago2 (siRNA), Ago1 (miRNA), and Piwi4 proteins against ASALV in Aedes aegypti derived cells. ASALV replication increased in Dicer2 and Ago2 knock-out cells, confirming the antiviral role of the siRNA pathway. In infected cells, mainly ASALV-specific siRNAs are produced while piRNAs, with the characteristic nucleotide bias resulting from ping-pong amplification, are only produced in Dicer2 knock-out cells. Taken together, ASALV interactions with the mosquito RNAi response differs from arthropod-borne alphaviruses in some aspects, although they also share some commonalities. Further research is needed to understand whether the identified differences can be generalised to other insect-specific alphaviruses.