2013
DOI: 10.1002/mma.2749
|View full text |Cite
|
Sign up to set email alerts
|

The Robin problem for the scalar Oseen equation

Abstract: We study the Robin problem for the scalar Oseen equation in an open n-dimensional set with compact Ljapunov boundary. We prescribe two types of Robin boundary conditions, and prove the unique solvability of these problems as well as a representation formula for the solution in form of a scalar Oseen single layer potential. Moreover, we prove the maximum principle for the solution to the Robin problem of the scalar Oseen equation.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2017
2017
2017
2017

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 15 publications
0
1
0
1
Order By: Relevance
“…Clearly Eλfalse(xfalse)=Eλfalse(xfalse). We have false|Eλfalse(xfalse)E0(x)false|=O(1),0.16em0.33emfalse|Eλfalse(xfalse)E0(x)false|=Ofalse|xfalse|1 as false|xfalse|0by [, Lemma 3.2]. If α=(α1,α2,α3) is a multiindex and λ0 then αE0Ωφ(x)=Ofalse|xfalse|1false|αfalse| as false|xfalse|, αEλΩφ(x)=Oefalse(false|λxfalse|λx1false)/2false|xfalse|1 as false|xfalse|,where false|αfalse|=α1+α2+α3<...>…”
Section: Potentials For the Scalar Oseen Equationunclassified
See 1 more Smart Citation
“…Clearly Eλfalse(xfalse)=Eλfalse(xfalse). We have false|Eλfalse(xfalse)E0(x)false|=O(1),0.16em0.33emfalse|Eλfalse(xfalse)E0(x)false|=Ofalse|xfalse|1 as false|xfalse|0by [, Lemma 3.2]. If α=(α1,α2,α3) is a multiindex and λ0 then αE0Ωφ(x)=Ofalse|xfalse|1false|αfalse| as false|xfalse|, αEλΩφ(x)=Oefalse(false|λxfalse|λx1false)/2false|xfalse|1 as false|xfalse|,where false|αfalse|=α1+α2+α3<...>…”
Section: Potentials For the Scalar Oseen Equationunclassified
“…All these results concern the exterior Dirichlet problem. Lately classical solutions of the Dirichlet problem, the Neumann problem and the Robin problem for the scalar Oseen equation has been studied by the integral equation method ().…”
Section: Introductionmentioning
confidence: 99%