In this work, PA6/EPDM-MA was added as an impact modifier for highperformance polypropylene (PP) production. PA6/EPDM-MA compounds were processed in an internal mixer, aiming at chemical reaction between maleic anhydride of EPDM-MA and the amine terminal groups of PA6. Afterward, PP/(PA6/EPDM-MA) blends were processed by extrusion and injection molding. Rheological properties were evaluated using torque rheometry; additionally, Fourier transform infrared spectroscopy, Molau test, impact and tensile strengths, Shore D hardness, thermal deflection temperature, X-ray diffraction, differential scanning calorimetry, thermogravimetry, water absorption, contact angle, and scanning electron microscopy tests were performed in injected specimens. PP/(PA6/EPDM-MA) with 70/(15/15)% displayed quite high increase in impact and elongation at break, with gains of 850% and 265%, compared to neat PP. There were no drastic losses in tensile strength, elastic modulus, and Shore D hardness, due to PA6 addition. A significant increase was seen in the thermal stability of PP/(PA6/EPDM-MA), corroborating the increase in structural stability seen in HDT. SEM images showed high interfacial adhesion between PP and PA6/EPDM-MA corroborating higher mechanical properties.Summing up, PA6/EPDM-MA premix acted as an efficient impact modifier for PP. Acquired data show that P6/EPDM-MA system was effective in developing high-performance PP with potential for application in the automotive and electronics industries.high-performance blends, PP/(PA6/EPDM-MA), reactive processing
| INTRODUCTIONPolypropylene (PP) is one of the most common industrially applied polymers, mainly due to its low cost, low density, good thermal properties, excellent processability, and reasonable mechanical properties. [1][2][3] However, PP displays low impact strength, which limits its higher performance applications [4] ; hence, PP must be toughened to expand the range of its properties. [5] Toughness is a quite useful parameter that determines whether a given