Coarse-grained molecular statics/dynamics methods are first used to investigate degradation in the PPTA fiber/yarn tensile strength, as a result of the prior compressive or tensile loading. PPTA fibers/yarns experience this type of loading in the course of a plain-weaving process, the process which is used in the fabrication of ballistic fabric and flexible armor. The more common allatom molecular simulations were not used to assess strength degradation for two reasons: (a) the size of the associated computational domain rendering reasonable run-times would be too small and (b) modeling of the mechanical response of multi-fibril PPTA fibers could not be carried out (again due to the limited size of the computational domain). However, all-atom simulations were used to (a) define the coarse-grained particles (referred to as ''beads'') and (b) parameterize various components of the bead/bead force-field functions. In the second portion of the work, a simplified finite-element analysis of the plain-weaving process is carried out in order to assess the extent of tensile-strength degradation in warp and weft yarns during the weaving process. In this analysis, a new material model is used for the PPTA fibers/yarns. Specifically, PPTA is considered to be a linearly elastic, transversely isotropic material with degradable longitudinal-tensile strength and the longitudinal Young's modulus. Equations governing damage and strength/stiffness degradation in this material model are derived and parameterized using the coarse-grained simulation results. Lastly, the finite-element results are compared with their experimental counterparts, yielding a decent agreement.