The behaviour of metals under mechanical loading, including shock loading conditions is strongly influenced by effects such as impurity levels, grain size, initial dislocation density and texture. The work discussed here is part of a wider study on the effects of orientation of aluminium single crystals to one dimensional shock loading, including the Hugoniot Elastic Limit and spall strength. In this work, specimens with three principle directions (<100>, <110> and <111>) parallel to the loading axis have been shock loaded and recovered under conditions of purely one-dimensional strain, with their post shock response monitored by quasi-static compression tests. Results show that the <100> crystal demonstrates a significant degree of post shock hardening, whilst the <111> crystal shows virtually none, and the <110> intermediate between the two. These results are consistent with the ordering of both the HELs and spall strengths observed in a previous paper, and have been explained in terms of the Schmidt factors.