Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
SummaryAll four subclasses of immunoglobulin G (IgG) antibodies have glycan structures attached to the protein part of the IgG molecules. Glycans linked to the Fc portion of IgG are found in all IgG antibodies, while about one‐fifth of IgG antibodies in plasma also have glycans attached to the Fab portion of IgG. The IgG3 subclass is characterized by more complex glycosylation compared to other IgG subclasses. In this review, we discuss the significant influence that glycans exert on the structural and functional properties of IgG. We provide a comprehensive overview of how the composition of these glycans can affect IgG's effector functions by modulating its interactions with Fcγ receptors and other molecules such as the C1q component of complement, which in turn influence various immune responses triggered by IgG, including antibody‐dependent cell‐mediated cytotoxicity (ADCC) and complement‐dependent cytotoxicity (CDC). In addition, the importance of glycans for the efficacy of therapeutics like monoclonal antibodies and intravenous immunoglobulin (IVIg) therapy is discussed. Moreover, we offer insights into IgG glycosylation characteristics and roles derived from general population, disease‐specific, and interventional studies. These studies indicate that IgG glycans are important biomarkers and functional effectors in health and disease.
SummaryAll four subclasses of immunoglobulin G (IgG) antibodies have glycan structures attached to the protein part of the IgG molecules. Glycans linked to the Fc portion of IgG are found in all IgG antibodies, while about one‐fifth of IgG antibodies in plasma also have glycans attached to the Fab portion of IgG. The IgG3 subclass is characterized by more complex glycosylation compared to other IgG subclasses. In this review, we discuss the significant influence that glycans exert on the structural and functional properties of IgG. We provide a comprehensive overview of how the composition of these glycans can affect IgG's effector functions by modulating its interactions with Fcγ receptors and other molecules such as the C1q component of complement, which in turn influence various immune responses triggered by IgG, including antibody‐dependent cell‐mediated cytotoxicity (ADCC) and complement‐dependent cytotoxicity (CDC). In addition, the importance of glycans for the efficacy of therapeutics like monoclonal antibodies and intravenous immunoglobulin (IVIg) therapy is discussed. Moreover, we offer insights into IgG glycosylation characteristics and roles derived from general population, disease‐specific, and interventional studies. These studies indicate that IgG glycans are important biomarkers and functional effectors in health and disease.
Antibodies are essential to immune homeostasis due to their roles in neutralizing pathogenic agents. However, failures in central and peripheral checkpoints that eliminate autoreactive B cells can undermine self-tolerance and generate autoantibodies that mistakenly target self-antigens, leading to inflammation and autoimmune diseases. While autoantibodies are well-studied in autoimmune and in some communicable diseases, their roles in chronic conditions, such as obesity and aging, are less understood. Obesity and aging share similar aspects of immune dysfunction, such as diminished humoral responses and heightened chronic inflammation, which can disrupt immune tolerance and foster autoantigen production, thus giving rise to autoreactive B cells and autoantibodies. In return, these events may also contribute to the pathophysiology of obesity and aging, to the associated autoimmune disorders linked to these conditions, and to the development of immunosenescence, an age-related decline in immune function that heightens vulnerability to infections, chronic diseases, and loss of self-tolerance. Furthermore, the cumulative exposure to antigens and cellular debris during obesity and aging perpetuates pro-inflammatory pathways, linking immunosenescence with other aging hallmarks, such as proteostasis loss and mitochondrial dysfunction. This review examines the mechanisms driving autoantibody generation during obesity and aging and discusses key putative antigenic targets across these conditions. We also explore the therapeutic potential of emerging approaches, such as CAR-T/CAAR-T therapies, vaccines, and BiTEs, to tackle autoimmune-related conditions in aging and obesity.
BackgroundPemphigus vulgaris (PV) is a life-threatening autoimmune blistering disease caused mainly by IgG autoantibodies (auto-abs) against the cadherin-type adhesion molecules desmoglein (Dsg) 1 and 3. Pathogenic anti-Dsg3 auto-abs bind to different Dsg3 epitopes, leading, among others, to signalling that is involved in pathogenic events, such as Dsg3 depletion. As central tools in research on PV, a limited number of antibodies such as AK23 are frequently used by the autoimmune bullous disease community.MethodsPreviously, we have introduced a novel Dsg3 EC5-binding antibody termed 2G4 that may potentially serve as a superior tool for numerous PV related analysis. The purpose of this study was to develop a quality-controlled production and verification process that allows I) a continuous quality improvement, and II) a verified and comprehensible overall quality with regard to pathogenic antigen-specific binding in a variety of pemphigus assays for each batch production.ResultsThus, a workflow based on a standardized operating procedure was established. This includes the verification of purity and in-vitro binding capacity (SDS-page, direct and indirect immunofluorescence) as primary parameters, and size analysis by mass-spectrometry and ex-vivo pathogenicity by monolayer dissociation assay.ConclusionWe here present an extensive point-by-point quality controlled IgG production protocol, which will serve as a basis for a standardized antibody assessment in PV research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.