Increasing evidence suggests that B cells contribute both to the regulation of normal autoimmunity and to the pathogenesis of immune mediated diseases, including multiple sclerosis (MS). B cells in MS are skewed toward a pro-inflammatory profile, and contribute to MS pathogenesis by antibody production, antigen presentation, T cells stimulation and activation, driving autoproliferation of brain-homing autoreactive CD4+ T cells, production of pro-inflammatory cytokines, and formation of ectopic meningeal germinal centers that drive cortical pathology and contribute to neurological disability. The recent interest in the key role of B cells in MS has been evoked by the profound anti-inflammatory effects of rituximab, a chimeric monoclonal antibody (mAb) targeting the B cell surface marker CD20, observed in relapsing-remitting MS. This has been reaffirmed by clinical trials with less immunogenic and more potent B cell-depleting mAbs targeting CD20 – ocrelizumab, ofatumumab and ublituximab. Ocrelizumab is also the first disease-modifying drug that has shown efficacy in primary-progressive MS, and is currently approved for both indications. Another promising approach is the inhibition of Bruton's tyrosine kinase, a key enzyme that mediates B cell activation and survival, by agents such as evobrutinib. On the other hand, targeting B cell cytokines with the fusion protein atacicept increased MS activity, highlighting the complex and not fully understood role of B cells and humoral immunity in MS. Finally, all other approved therapies for MS, some of which have been designed to target T cells, have some effects on the frequency, phenotype, or homing of B cells, which may contribute to their therapeutic activity.