Rivers play a vital role in our ecosystems, providing fresh water, supporting rich biodiversity, and contributing to human well-being. However, in the face of climate change and intensive human activities, the sediment load in rivers can reach critical levels, presenting a complex set of challenges that require immediate action. The increased sediment load can alter aquatic habitats, clog channels, reduce reservoir storage capacity, and increase the risk of flooding. These direct threats entail high costs in terms of material and ecological damage, loss of life, and expenditure on rebuilding damaged infrastructure. The quantification of bedload in watercourses is therefore crucial for maintaining water and soil resources, safeguarding riparian communities, and preserving ecological balance. The study reports the findings of a three-year monitoring of the bed load of Skhirate Wadi, a river that drains a part of the western Moroccan Meseta. The study used the colorimetric monitoring method, which quantifies the volumes of coarse sediment that were transported by monitoring topographic variations in the riverbed and measuring the distances covered by the sediment. The study showed the sediment was found to move around seven times annually on average. However, the frequency and magnitude of floods and the size of particles affect the variation in this displacement. It also showed sediments travel an average distance ranging from 649 to 883 meters per year, and that the average specific bedload at the watershed scale is 30 m3/ Km2/ year. Relationships between flood peaks mobilized sediment volumes, and average particle distances are established and discussed. These results are fundamental to understanding of coarse sediment transfer processes in the small rivers of the central plateau. They are also essential for assessing the impact on the aquatic ecosystem, on downstream dams, and on the various existing road and hydro-agricultural infrastructures. This assessment will enable the implementation of appropriate management strategies to anticipate changes and plan the planning of the river and its watershed.