Background
A double-layer transdermal drug-in-adhesive patch of carvedilol was developed using functional and nonfunctional grades of acrylic adhesives, DURO-TAK® 387-2051, DURO-TAK® 387-2510, and DURO-TAK® 87-4098. The patch was designed to provide adequate permeation of the drug up to 2 days, with effective adhesion attributes. An optimized formulation was selected, the effect of the combination was studied and a 180° peel strength test was performed to evaluate adhesive properties. Further, the patch was assessed for in vivo studies on basis of biochemical parameters, skin irritation, and stability studies. The stability study was carried out on optimized fresh (S1) and 6 months old patches stored at room, and accelerated condition (40 ± 2 °C/75 ± 5% RH) using FTIR, DSC, and SEM techniques.
Result
It was studied that the steady-state flux (Jss) or permeation rate of the drug through excised rat skin has relied on the nature of acrylic and the combination of acrylic polymers. The TDDS containing –OH functional group DT 387-2510 with nonfunctional pressure-sensitive adhesives (PSAs) DT 87-4098, with Span 80 as penetration enhancer exhibited maximum flux (19.12 ± 0.64 μg/cm2/h) and form homogeneous and stable blends, controlling permeation of drug at a desired steady rate for 48 h. The data obtained from in vivo studies using biochemical parameters suggested that there were no statistical differences observed in results for the control and treated group while analyzing observations for serum creatinine, glucose test, sodium test, albumin, and potassium (p > 0.05). Also, the optimized formulation showed no sign of localized reactions and was confirmed by a skin histological study indicating the formulation was safe and compatible with the skin. A significant shift of peaks was not observed in FTIR spectra and DSC thermograms of the patches after the stability period.
Conclusion
The investigation reveals that the drug-in-adhesive patch of carvedilol, by a combination of functional and nonfunctional PSAs, provides a good and effective option for controlled delivery of carvedilol. From our findings, it has been concluded that drug in the adhesive patch has been able to provide satisfactory adhesion, drug uniformity, drug permeation, marked positive biochemical results, and good stability.