Purpose Life cycle thinking and assessment require a holistic approach to the evaluation of product supply chains. An assessment from raw material extraction to end of life of any products is based on modeling a wide number of aspects and options, e.g., at technological, geographical, and temporal levels. Since the use phase is one of the most contributing life cycle stages for some products (e.g., appliance, housing, cars), a robust modeling of this stage is fundamental. Several attempts to better modeling use-phase have been performed; however, so far no systematic study is available on how to integrate behavioral science (BS) insights into LCA. This is even more important when the impact of the product under consideration is strongly determined by the use phase relatively to other life cycle stages. The aim of this paper is to explore how behavioral science has been used to date and how BS can contribute towards more robust modeling of use phase in LCA and as basis for a behavior-driven ecodesign. Methods We identified the key areas in which LCA and ecodesign may benefit from integrating insights from behavioral science and developing a conceptual model. Both robust modeling and the design of behavior change interventions rest on a sound understanding of behavior in the specific context of interest though empirical investigation. Hence, we reviewed literature on behavioral science and introduce key drivers of human behavior that are relevant in the context of use phase modeling and ecodesign. We provide examples where these were applied to facilitate the integration of BS elements by practitioners. Results and discussion Consumer's behavior is increasingly recognized as one of the drivers of overall environmental impact of a product, and some examples of use of BS for LCA are available in literature. We suggest that behavioral science can be useful in the context of life cycle assessment in two ways: measuring behavior and assessing potential and means for changing behavior. Specifically, insights and methods from behavioral sciences could be applied for assessing variability of consumer behavior, understanding leverages for behavioral changes, and possible rebound effects. Conclusions This insight may help to model the use phase more accurately, to identify realistic scenarios, and to support behavior-driven eco-innovation.