It is uncontroversial to claim that cognitive science studies many complex phenomena. What is less acknowledged are the contradictions among many traditional commitments of its investigative approaches and the nature of cognitive systems. Consider, for example, methodological tensions that arise due to the fact that like most natural systems, cognitive systems are nonlinear; and yet, traditionally cognitive science has relied on linear statistical data analyses. Cognitive science as complexity science is offered as an interdisciplinary framework for the investigation of cognition that can dissolve such contradictions and tensions. Here, cognition is treated as exhibiting the following four key features: emergence, nonlinearity, self‐organization, and universality. This framework integrates concepts, methods, and theories from such disciplines as systems theory, nonlinear dynamical systems theory, and synergetics. By adopting this approach, the cognitive sciences benefit from a common set of practices to investigate, explain, and understand cognition in its varied and complex forms.
This article is categorized under:
Computer Science > Neural Networks
Psychology > Theory and Methods
Philosophy > Foundations of Cognitive Science
Neuroscience > Cognition