Recent studies have suggested that Crk-like adapter protein (CrkL) and epithelial-to-mesenchymal transition (EMT) induced by CCL19/CCR7 play an important role in ovarian epithelial carcinogenesis. However, the regulatory mechanisms of CrkL on the CCL19/CCR7 signaling pathways in epithelial ovarian carcinomas (EOC) are not well characterized. Here, CCR7 and CrkL proteins were tested in 30 EOC tissues and cell lines. In vitro, the roles of CrkL in CCL19-stimulated SKOV-3 cell invasion and migration were investigated. In this work, CCR7 and CrkL over-expressed in EOC tissues and cell lines and correlated with FIGO stage and lymph node metastasis. Moreover, CCR7 and CrkL serve as an independent prognostic factor. In SKOV-3 cells, CrkL knockdown markedly suppressed the CCL19-stimulated expression of p-ERK and EMT biomarkers (N-cadherin, Snail and MMP9), compared with control. In contrast, p-AKT expression level did not change. On the other hand, functional analysis revealed CrkL knockdown could significantly decrease SKOV-3 cell invasion number of transwell invasion assay, and wound closure area of wound healing assay, compared to control. In conclusion, CrkL regulates CCL19/CCR7-induced EMT via ERK signaling pathway in EOC patients, which further suggested CrkL could be suggested as an efficient target in ovarian cancer treatment.