Both in vivo and in vitro experiments were conducted to determined the effects of digitoxin on the secretion of testosterone, and its underlying mechanisms including testicular adenosine 3':5'-cyclic monophosphate (cAMP), and the activities of steroidogenic enzymes. Male rats were injected with digitoxin, human chorionic gonadotropin (hCG), or hCG plus digitoxin via a jugular catheter. Blood samples were collected immediately before and at 30 and 60 min after the challenge, and analyzed for testosterone by radioimmunoassay. In an in vitro study, rat testicular interstitial cells were isolated and incubated with digitoxin, hCG, 8-bromo-cAMP (8-Br-cAMP), digitoxin plus hCG, or digitoxin plus 8-Br-cAMP at 34 degrees C for 1 h. The media were collected and analyzed for testosterone. For studying cAMP accumulation, testicular interstitial cells were incubated for 1 h in the medium containing isobutyl-1-methylxanthine (IBMX) and different doses of digitoxin with the absence or presence of hCG. After incubation, cells were processed for determining cAMP content. Intravenous injection of digitoxin decreased hCG-stimulated, but not basal, plasma testosterone levels. Administration of digitoxin in vitro resulted in an inhibition of both basal and hCG- as well as 8-Br-cAMP-stimulated release of testosterone. In addition, digitoxin diminished hCG-stimulated cAMP accumulation in rat testicular interstitial cells. Furthermore, digitoxin inhibited the activity of cytochrome P450 side chain cleavage enzyme (P450scc) but failed to affect the activities of other steroidogenic enzymes. Taken together, these results suggest that the acute inhibitory effect of digitoxin on the testosterone production in testicular interstitial cells involves, at least partly, an inefficiency of post-cAMP events, and a decrease of P450scc activity.