The objectives of this study were to determine the presence of natural antibodies (NAb) in plasma and milk of individual dairy cows and to study the relation between NAb concentrations and energy balance (EB) and dietary energy source. Cows (n = 76) were fed a mainly glucogenic, lipogenic, or a mixture of both diets (50:50 dry matter basis) from wk 3 before the expected calving date until wk 9 postpartum. Diets were isocaloric (net energy basis) and equal in intestinal digestible protein. Blood and milk were sampled weekly. Liver biopsies were taken in wk -2, 2, 4, and 6 relative to calving. Data are expressed as LSM +/- SEM. The NAb titers are expressed as the (2)log values of the highest dilution giving a positive reaction. The NAb concentration in plasma binding either keyhole limpet hemocyanin (KLH) or Escherichia coli lipopolysaccharide (LPS) increased with parity. The NAb concentration binding KLH was greater for cows fed the glucogenic diet (9.63 +/- 0.08) compared with the lipogenic diet (9.26 +/- 0.08). In milk, cows fed the glucogenic diet had smaller NAb concentrations binding KLH (3.98 +/- 0.18) and LPS (2.88 +/- 0.17) compared with cows fed the mixed diet (KLH: 4.93 +/- 0.18; LPS: 3.70 +/- 0.17). The NAb concentration in plasma had a positive relation with energy balance variables: EB, dry matter intake, milk yield, and plasma cholesterol, whereas NAb concentration in milk had a negative relation with energy balance variables: EB, dry matter intake, and plasma cholesterol. Additionally, NAb concentrations in milk had a positive relation with plasma nonesterified fatty acid concentration and milk fat and protein percentage. There was a tendency for a positive relation of NAb concentration binding LPS in plasma and somatic cell count in milk. No significant relations were detected between NAb concentrations in milk or plasma and plasma beta-hydroxybutyrate concentration and liver triacyl glyceride content. In conclusion, NAb are present in both milk and plasma of dairy cows peripartum and NAb concentrations increase with parity. Furthermore, our data indicate that a negative energy balance in dairy cows in early lactation can be associated with compromised innate immune function as indicated by decreased NAb concentration in plasma.