As the global third-largest stationary source of carbon emissions, petroleum refineries have attracted much attention. Many investigations and methodologies have been used for the quantification of carbon emissions of refineries at the industry or enterprise scale. The granularity of current carbon emissions data impairs the reliability of precise mitigation, so analysis and identification of influencing factors for carbon emissions at a more micro-level, such as unit level, is essential. In this paper, four typical units, including fluid catalytic cracking, Continuous Catalytic Reforming, delayed coking, and hydrogen production, were chosen as objects. A typical 5-million-ton scale Chinese petroleum refinery was selected as an investigating object. The Redundancy analysis and multiple regression analysis were utilized to explore the relationship between the process parameters and carbon emissions. Three types of influencing factors include reaction conditions, processing scale, and materials property. The most important mitigation of carbon emission, in this case, can be summarized as measures of improving energy efficiency via optimizing equipment parameters or prompting mass efficiency by upgrading the scale for material and energy flow.