Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple systems of the body. Recent research on the gut microbiota dysbiosis associated with SLE patients has gained traction and warranted further exploration. It has not been determined whether the change in the gut microbiota is a cause of SLE or a symptom of SLE. However, based on the physiological and pathophysiological role of the bacteria in the gut microbiome, as levels of the bacteria rise or fall, symptomatology in SLE patients could be affected. This review analyzes the recent studies that examined the changes in the gut microbiota of SLE patients and highlights the correlations between gut dysbiosis and the clinical manifestations of SLE. A systematic search strategy was developed by combining the terms "SLE," "systemic lupus erythematosus," and "gut microbiome." Biomedical Reference Collection, CINAHL, Medline ProQuest, and PubMed Central databases were searched by combining the appropriate keywords with "AND." Only full-text, Englishlanguage articles were searched. The articles were restricted from 2013 to 2023. Only peer-reviewed controlled studies with both human and animal trials were included in this scoping review. Review articles, non-English articles, editorials, case studies, and duplicate articles from the four databases were excluded.Various species of bacteria were found to be positively or negatively associated with SLE gut microbiomes. Among the bacterial species increased were Clostridium, Lactobacilli, Streptococcus, Enterobacter, and Klebsiella. The bacterial species that decreased were Bifidobacteria, Prevotella, and the Firmicutes/Bacteroidetes ratio. Literature shows that Clostridium is one of several bacteria found in abundance, from pre-disease to the diseased state of SLE. Lachnospiraceae and Ruminococcaceae are both part of the family of butyrate-producing anaerobes that are known for their role in strengthening the skin barrier function and, therefore, may explain the cutaneous manifestations of SLE patients. Studies have also shown that the Firmicutes/Bacteroidetes ratio is significantly depressed, which may lead to appetite changes and weight loss seen in SLE patients. Based on the established role of these bacteria within the gut microbiome, the disruption in the gut ecosystem could explain the symptomatology common in SLE patients. By addressing these changes, our scoping review encourages further research to establish a true causal relationship between the bacterial changes in SLE patients as well as furthering the scope of microbiota changes in other systems and autoimmune diseases.