Purpose We have recently demonstrated that gonadotrophin-releasing hormone receptor-activating autoantibodies (GnRHR-AAb) are associated with polycystic ovary syndrome (PCOS). The aim of this study was to map the antigenic epitopes of GnRHR-AAb from PCOS patients, and develop retro-inverso peptide inhibitors that specifically target GnRHR-AAb. Methods Serum samples from ten GnRHR-AAb-positive PCOS patients and ten GnRHR-AAb-negative healthy controls were tested. Epitope mapping for GnRHR-AAb was performed using a set of 11 overlapping octapeptides spanning the second extracellular loop of GnRHR. Antibody-blocking effect of the designed retro-inverso peptide inhibitors was evaluated in a cell-based bioassay. Results Two peptide sequences, FSQCVTHC and HCSFSQWW, were found to react with all PCOS sera, but not with control sera. Two retro-inverso peptides that mimic the identified epitopes, d-CHTVCQSF and d-WWQSFSCH, significantly inhibited PCOS serum IgG-induced GnRHR activation. One of these two peptide inhibitors, d-CHTVCQSF, largely suppressed autoantibody-induced GnRHR activation, suggesting that the epitope sequence FSQCVTHC may be a major functional target of GnRHR-AAb.
ConclusionWe have identified a dominant functional epitope for GnRHR-AAb associated with PCOS, and demonstrated effective blocking of GnRHR-AAb activity with epitope-mimicking retro-inverso peptide inhibitors. These proteolytically stable decoy peptides may have important therapeutic implications in subjects who harbor these autoantibodies.