To modulate gene expression in research studies or in potential clinical therapies, transfection of exogenous nucleic acids including plasmid DNA and small interference RNA (siRNA) are generally performed. However, the cellular processing and the fate of these nucleic acids remain elusive. By investigating the cellular behavior of transfected nucleic acids using confocal imaging, here we show that when siRNA was cotransfected into cultured cells with other nucleic acids, including single-stranded RNA oligonucleotides, single and double-stranded DNA oligonucleotides, as well as long double-stranded plasmid DNA, they all aggregate in the same cytoplasmic granules. Interestingly, the amount of siRNA aggregating in granules was found not to correlate with the gene silencing activity, suggesting that assembly of cytoplasmic granules triggered by siRNA transfection may be separable from the siRNA silencing event. Our results argue against the claim that the siRNAaggregating granules are the functional site of RNA interference (RNAi). Taken together, our studies suggest that, independent of their types or forms, extraneously transfected nucleic acids are processed through a common cytoplasmic pathway and trigger the formation of a new type of cytoplasmic granules "transfection granules".