Objectives
To verify the anti-catabolic effects of acteoside [α-L-rhamnosyl-(1->3)-β-D-glucoside] against osteoarthritis and its anti-catabolic signaling pathway.
Methods
Primary rat chondrocytes were isolated enzymatically from the articular cartilage of rat knee joint. Cytotoxicity of acteoside was assessed by MTT and Cell Live/Dead assay. Proteoglycan content was measured by dimethylmethylene blue assay. The proteoglycan loss was assessed by histological analysis using safranin-O & fast green staining after ex vivo organ culture of articular cartilage. The alteration of catabolic factors such as cartilage degrading enzymes, pro-inflammation cytokines, and inflammatory mediators were assessed by qPCR, qRT-PCR, gelatin zymography, western blot, and cytokine array. Cellular signaling pathways were investigated by western blot and nucleus translocation. Acteoside was orally administrated to osteoarthritic animals generated by the destabilization of medial meniscus at the knee joint of mice for 8 weeks. Thereafter, proteoglycan loss was assessed by safranin-O & fast green staining.
Results
Acteoside did not decrease the viabilities of mouse fibroblast L929 cells used as a normal cells and primary rat chondrocytes. Acteoside counteracted the IL-1β-induced proteoglycan loss in the chondrocytes and articular cartilage through suppressing the expression and activation of cartilage-degrading enzyme such as matrix metalloproteinase (MMP)-13, MMP-1, and MMP-3. Furthermore, acteoside suppressed the expression of inflammatory mediators such as inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2 in the primary rat chondrocytes treated with IL-1β. Subsequently, the expression of pro-inflammatory cytokines was decreased by acteoside in the primary rat chondrocytes treated with IL-1β. Moreover, acteoside suppressed not only the phosphorylation of mitogen-activated protein kinases in primary rat chondrocytes treated with IL-1β but also the translocation of NFκB from the cytosol to the nucleus through suppression of its phosphorylation. Oral administration of 5 and 10 mg/kg acteoside attenuated the progressive degeneration of articular cartilage in the osteoarthritic mouse model generated by destabilization of the medial meniscus.
Conclusion
Our findings indicate that acteoside is a promising potential anti-catabolic agent or supplement to attenuate or prevent progressive degeneration of articular cartilage.