We study the distributed simulation problem where n players aim to generate same sequences of random coin flips where some subsets of the players share an independent common coin which can be tossed multiple times, and there is a publicly seen blackboard through which the players communicate with each other. We provide a tight representation of the optimal communication rates via linear programming, and more importantly, propose explicit algorithms for the optimal distributed simulation for a wide class of hypergraphs. In particular, the optimal communication rate in complete hypergraphs is still achievable in sparser hypergraphs containing a path-connected cycle-free cluster of topologically connected components.Some key steps in analyzing the upper bounds rely on two different definitions of connectivity in hypergraphs, which may be of independent interest.