“…FTT can consider the effects of heat transfer loss and the limitations of time and heat exchanger (HEX) area between the heat reservoir (HR) and WF which are largely ignored in classical thermodynamics. Many researchers have introduced FTT into the performance optimizations of thermal cycles and processes, including the optimal performances of the Carnot cycles (Curzon & Ahlborn, 1975;Valencia-Ortega et al, 2021), Stirling engines (Xu et al, 2022), diesel engines Ge et al, 2021), dual cycles (Ge et al, 2022), Kalina cycles (Feng et al, 2020), dual-Miller cycles (Ebrahimi, 2021), organic Rankine cycles (Park & Kim, 2016;Wu, Ge et al, 2020;Feng et al, 2021), combined cycles (Gonca & Guzel, 2022;, thermoelectric devices (Chen et al, 2020a;Chen et al, 2021a;Chen & Lorenzini, 2022a), thermal Brownian cycles (Qi et al, 2021a(Qi et al, , 2021bQi et al, 2022aQi et al, , 2022b, thermoradiative devices (Li & Chen, 2021;Zhang, Yang et al 2021), blue engines (Lin et al, 2022), electron engines (Ding et al, 2021;Qui et al, 2021a), thermionic devices (Qiu et al, 2021b), methane reforming , chemical engines (Chen & Xia, 2022a, chemical pumps , Brayton cycles (Ibrahim et al, 1991;Ust et al, 2006;Chen et al 2020bChen et al , 2020cQui et al, 2022;Jin et al, 2022), and refrigeration cycles (Chen & Lorenzini, 2022b), as well as the optimal configurations of refrigeration cycles (Badescu, 2021;Paul & Hoffman, ...…”