We tested whether erlotinib hydrochloride (Tarceva,, an orally active epidermal growth factor receptor tyrosine kinase inhibitor, is a substrate for the ATP-binding cassette drug transporters P-glycoprotein (Pgp; MDR1, ABCB1), breast cancer resistance protein (BCRP; ABCG2), and multidrug resistance protein 2 (MRP2; ABCC2) in vitro and whether P-gp and BCRP affect the oral pharmacokinetics of erlotinib hydrochloride in vivo. In vitro cell survival, drug transport, accumulation, and efflux of erlotinib were done using Madin-Darby canine kidney II [MDCKII; wild-type (WT), MDR1, Bcrp1, and MRP2] and LLCPK (WT and MDR1) cells and monolayers as well as the IGROV1 and the derived human BCRP-overexpressing T8 cell lines. In vivo, the pharmacokinetics of erlotinib after p.o. and i.p. administration was studied in Bcrp1/Mdr1a/1b -/-(triple-knockout) and WT mice. In vitro, erlotinib was actively transported by P-gp and BCRP/Bcrp1. No active transport of erlotinib by MRP2 was observed. In vivo, systemic exposure (P = 0.01) as well as bioavailability of erlotinib after oral administration (5 mg/kg) were statistically significantly increased in Bcrp1/Mdr1a/1b -/-knockout mice (60.4%) compared with WT mice (40.0%; P = 0.02). Conclusion: Erlotinib is transported efficiently by P-gp and BCRP/Bcrp1 in vitro. In vivo, absence of P-gp and Bcrp1 significantly affected the oral bioavailability of erlotinib. Possible clinical consequences for drug-drug and drug-herb interactions in patients in the gut between P-gp/BCRP-inhibiting substrates and oral erlotinib need to be addressed.