Bulk superconductivity was recently reported in the antiperovskite oxide Sr3−xSnO, with a possibility of hosting topological superconductivity. We investigated the evolution of superconducting properties such as the transition temperature Tc and the size of the diamagnetic signal, as well as normal-state electronic and crystalline properties, with varying the nominal Sr deficiency x0. Polycrystalline Sr3−xSnO was obtained up to x0 = 0:6 with a small amount of SrO impurities. The amount of impurities increases for x0 > 0.6, suggesting phase instability for high deficiency. Mössbauer spectroscopy reveals an unusual Sn4− ionic state in both stoichiometric and deficient samples. By objectively analyzing superconducting diamagnetism data obtained from a large number of samples, we conclude that the optimal x0 lies in the range 0.5 < x0 < 0.6. In all superconducting samples, two superconducting phases appear concurrently that originate from Sr3−xSnO but with varying intensities. These results clarify the Sr deficiency dependence of the normal and superconducting properties of the antiperovskite oxide Sr3−xSnO will ignite future work on this class of materials.