Background and aims
Sexually transmitted infections (STIs) are a significant global public health challenge due to their high incidence rate and potential for severe consequences when early intervention is neglected. Research shows an upward trend in absolute cases and DALY numbers of STIs, with syphilis, chlamydia, trichomoniasis, and genital herpes exhibiting an increasing trend in age-standardized rate (ASR) from 2010 to 2019. Machine learning (ML) presents significant advantages in disease prediction, with several studies exploring its potential for STI prediction. The objective of this study is to build males-based and females-based STI risk prediction models based on the CatBoost algorithm using data from the National Health and Nutrition Examination Survey (NHANES) for training and validation, with sub-group analysis performed on each STI. The female sub-group also includes human papilloma virus (HPV) infection.
Methods
The study utilized data from the National Health and Nutrition Examination Survey (NHANES) program to build males-based and females-based STI risk prediction models using the CatBoost algorithm. Data was collected from 12,053 participants aged 18 to 59 years old, with general demographic characteristics and sexual behavior questionnaire responses included as features. The Adaptive Synthetic Sampling Approach (ADASYN) algorithm was used to address data imbalance, and 15 machine learning algorithms were evaluated before ultimately selecting the CatBoost algorithm. The SHAP method was employed to enhance interpretability by identifying feature importance in the model’s STIs risk prediction.
Results
The CatBoost classifier achieved AUC values of 0.9995, 0.9948, 0.9923, and 0.9996 and 0.9769 for predicting chlamydia, genital herpes, genital warts, gonorrhea, and overall STIs infections among males. The CatBoost classifier achieved AUC values of 0.9971, 0.972, 0.9765, 1, 0.9485 and 0.8819 for predicting chlamydia, genital herpes, genital warts, gonorrhea, HPV and overall STIs infections among females. The characteristics of having sex with new partner/year, times having sex without condom/year, and the number of female vaginal sex partners/lifetime have been identified as the top three significant predictors for the overall risk of male STIs. Similarly, ever having anal sex with a man, age and the number of male vaginal sex partners/lifetime have been identified as the top three significant predictors for the overall risk of female STIs.
Conclusions
This study demonstrated the effectiveness of the CatBoost classifier in predicting STI risks among both male and female populations. The SHAP algorithm revealed key predictors for each infection, highlighting consistent demographic characteristics and sexual behaviors across different STIs. These insights can guide targeted prevention strategies and interventions to alleviate the impact of STIs on public health.