Rheumatoid arthritis (RA) is a chronic inflammatory joint disorder that causes systemic inflammation, autoimmunity, and joint abnormalities that result in permanent disability. Exosomes are nanosized extracellular particles found in mammals (40–100 nm). They are a transporter of lipids, proteins, and genetic material involved in mammalian cell–cell signaling, biological processes, and cell signaling. Exosomes have been identified as playing a role in rheumatoid arthritis-related joint inflammation (RA). Uniquely functioning extracellular vesicles (EVs) are responsible for the transport of autoantigens and mediators between distant cells. In addition, paracrine factors, such as exosomes, modulate the immunomodulatory function of mesenchymal stem cells (MSCs). In addition to transporting genetic information, exosomes convey miRNAs between cells and have been studied as drug delivery vehicles. In animal models, it has been observed that MSCs secrete EVs with immunomodulatory properties, and promising results have been observed in this area. By understanding the diversity of exosomal contents and their corresponding targets, it may be possible to diagnose autoimmune diseases. Exosomes can be employed as diagnostic biomarkers for immunological disorders. We here discuss the most recent findings regarding the diagnostic, prognostic, and therapeutic potential of these nanoparticles in rheumatoid arthritis and provide an overview of the evidence pertaining to the biology of exosomes in RA.