Immanuel Kant's Metaphysical Foundations of Natural Science (1786) provides metaphysical foundations for the application of mathematics to empirically given nature. The application that Kant primarily has in mind is that achieved in Isaac Newton's Principia (1687). Thus, Kant's first chapter, the Phoronomy, concerns the mathematization of speed or velocity, and his fourth chapter, the Phenomenology, concerns the empirical application of the Newtonian notions of true or absolute space, time, and motion. This paper concentrates on Kant's second and third chapters-the Dynamics and the Mechanics, respectively-and argues that they are best read as providing a transcendental explanation of the conditions for the possibility of applying the (mathematical) concept of quantity of matter to experience. Kant again has in mind the empirical measures of this quantity that Newton fashions in the Principia, and he aims to make clear, in particular, how Newton achieves a universal measure for all bodies whatsoever by projecting the static quantity of terrestrial weight into the heavens by means of the theory of universal gravitation. Kant is not attempting to prove a priori what Newton has established empirically but, rather, to clarify the character of Newton's mathematization by building Newton's empirical measures into the very concept of matter that is articulated in the Metaphysical Foundations.