The knowledge of how diet choices, dietary supplements, and feed intake influence molecular mechanisms in ruminant nutrition and physiology to maintain ruminant health, is essential to attain. In the present review, we focus on the role of microRNAs in ruminant health and disease; additionally, we discuss the potential of circulating microRNAs as biomarkers of disease in ruminants and the state of technology for their detection, also considering the major difficulties in the transition of biomarker development from bench to clinical practice. MicroRNAs are an inexhaustible class of endogenous non-protein coding small RNAs of 18 to 25 nucleotides that target either the 3′ untranslated (UTR) or coding region of genes, ensuring a tight post-transcriptionally controlled regulation of gene expression. The development of new “omics” technologies facilitated a fresh perspective on the nutrition–to–gene relationship, incorporating more extensive data from molecular genetics, animal nutrition, and veterinary sciences. MicroRNAs might serve as important regulators of metabolic processes and may present the inter-phase between nutrition and gene regulation, controlled by the diet. The development of biomarkers holds the potential to revolutionize veterinary practice through faster disease detection, more accurate ruminant health monitoring, enhanced welfare, and increased productivity. Finally, we summarize the latest findings on how microRNAs function as biomarkers, how technological paradigms are reshaping this field of research, and how platforms are being used to identify novel biomarkers. Numerous studies have demonstrated a connection between circulating microRNAs and ruminant diseases such as mastitis, tuberculosis, foot-and-mouth disease, fasciolosis, and metabolic disorders. Therefore, the identification and analysis of a small number of microRNAs can provide crucial information about the stage of a disease, etiology, and prognosis.