Abstract1 2 6 0 VOLUME 22 | NUMBER 11 | NOVEMBER 2016 nature medicine a r t i c l e s bnAbs have become blueprints for vaccine design owing to their unequalled activity against divergent HIV-1 strains and proven potency in preventing and suppressing HIV-1 infection after in vivo administration [1][2][3][4][5][6][7][8] . Elicitation of potent bnAb activity is relatively rare in natural HIV-1 infection: only 10-25% of infected individuals develop breadth, and an estimated 1% generate highly potent bnAb, or 'elite neutralization' , activity 9,10 . Although much is known about the functional properties of bnAbs, the parameters that govern their evolution in natural infection remain unknown, which is a critical limitation for vaccine development. To date, no vaccine approach has induced bnAb responses that match those elicited in natural infection 1,11 . Defining what restricts and promotes bnAb evolution in certain individuals will be crucial for devising successful vaccine regimens, as the same restrictions are likely to be encountered during immunization.Observations that bnAb activity arises predominantly in viremic individuals after several years of infection and is linked to lower CD4 + cell counts (referred to here as CD4 levels) 4,12-14 strongly suggest that prolonged exposure to viral antigen is needed for induction of bnAbs.Broadly neutralizing antibodies (bnAbs) are a focal component of HIV-1 vaccine design, yet basic aspects of their induction remain poorly understood. Here we report on viral, host and disease factors that steer bnAb evolution using the results of a systematic survey in 4,484 HIV-1-infected individuals that identified 239 bnAb inducers. We show that three parameters that reflect the exposure to antigen-viral load, length of untreated infection and viral diversity-independently drive bnAb evolution. Notably, black participants showed significantly (P = 0.0086-0.038) higher rates of bnAb induction than white participants. Neutralization fingerprint analysis, which was used to delineate plasma specificity, identified strong virus subtype dependencies, with higher frequencies of CD4-binding-site bnAbs in infection with subtype B viruses (P = 0.02) and higher frequencies of V2-glycan-specific bnAbs in infection with non-subtype B viruses (P = 1 × 10 −5 ). Thus, key host, disease and viral determinants, including subtypespecific envelope features that determine bnAb specificity, remain to be unraveled and harnessed for bnAb-based vaccine design.This may be necessary in part to allow the extensive antibody-affinity maturation that is characteristic of many HIV-1-specific bnAbs 15,16 . Similarly, antigen levels may be relevant, as bnAbs have been found to evolve less frequently in individuals with lower viral loads 1,4,13,17 . Individual case studies delineating pathways of bnAb maturation have highlighted the tight interplay between virus escape and antibody adaptation that precedes the development of a broad neutralization response [18][19][20][21][22][23] . In line with this, the viral envelop...