Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Objective To explore the mechanism underlying the therapeutic effect of Bufei Yishen Formula III combined with exercise rehabilitation (ECC-BYF III + ER) on chronic obstructive pulmonary disease (COPD) and further identify hub genes. Materials and Methods Gene Set Enrichment Analysis was used to identify the COPD-associated pathways and reversal pathways after ECC-BYF III + ER treatment. Protein-protein interaction network analysis and cytoHubba were used to identify the hub genes. These genes were verified using independent datasets, molecular docking and quantitative real-time polymerase chain reaction experiment. Results Using the high-throughput sequencing data of COPD rats from our laboratory, 49 significantly disturbed pathways were identified in COPD model compared with control group via gene set enrichment analysis (false discovery rate < 0.05). The 34 pathways were reversed after ECC-BYF III + ER treatment. In the 2306 genes of these 34 pathways, 121 of them were differentially expressed in COPD rats compared with control samples. A protein–protein interaction network comprising 111 nodes and 274 edges was created, and 34 candidate genes were identified. Finally, seven COPD hub genes ( Il1b , Ccl2 , Cxcl1 , Apoe , Ccl7 , Ccl12 , and Ccl4 ) were well identified and verified in independent COPD rat data from our laboratory and the public dataset GSE178513. The area under the receiver operating characteristic curve values ranged from 0.86 to 1 and from 0.67 to 1, respectively. The reliability of the mentioned genes, which can bind to the active ingredients of ECC-BYF III through molecular docking, were further verified through qRT-PCR experiments. Conclusion Thirty-four COPD-related pathways and seven hub genes that may be regulated by ECC-BYF III + ER were identified and well verified. The findings of this study may provide insights into the treatment and mechanism underlying COPD.
Objective To explore the mechanism underlying the therapeutic effect of Bufei Yishen Formula III combined with exercise rehabilitation (ECC-BYF III + ER) on chronic obstructive pulmonary disease (COPD) and further identify hub genes. Materials and Methods Gene Set Enrichment Analysis was used to identify the COPD-associated pathways and reversal pathways after ECC-BYF III + ER treatment. Protein-protein interaction network analysis and cytoHubba were used to identify the hub genes. These genes were verified using independent datasets, molecular docking and quantitative real-time polymerase chain reaction experiment. Results Using the high-throughput sequencing data of COPD rats from our laboratory, 49 significantly disturbed pathways were identified in COPD model compared with control group via gene set enrichment analysis (false discovery rate < 0.05). The 34 pathways were reversed after ECC-BYF III + ER treatment. In the 2306 genes of these 34 pathways, 121 of them were differentially expressed in COPD rats compared with control samples. A protein–protein interaction network comprising 111 nodes and 274 edges was created, and 34 candidate genes were identified. Finally, seven COPD hub genes ( Il1b , Ccl2 , Cxcl1 , Apoe , Ccl7 , Ccl12 , and Ccl4 ) were well identified and verified in independent COPD rat data from our laboratory and the public dataset GSE178513. The area under the receiver operating characteristic curve values ranged from 0.86 to 1 and from 0.67 to 1, respectively. The reliability of the mentioned genes, which can bind to the active ingredients of ECC-BYF III through molecular docking, were further verified through qRT-PCR experiments. Conclusion Thirty-four COPD-related pathways and seven hub genes that may be regulated by ECC-BYF III + ER were identified and well verified. The findings of this study may provide insights into the treatment and mechanism underlying COPD.
Mitochondria play a significant and varied role in inflammatory lung disorders. Mitochondria, known as the powerhouse of the cell because of their role in producing energy, are now recognized as crucial regulators of inflammation and immunological responses. Asthma, chronic obstructive pulmonary disease, and acute respiratory distress syndrome are characterized by complex interactions between immune cells, inflammatory substances, and tissue damage. Dysfunctional mitochondria can increase the generation of reactive oxygen species (ROS), triggering inflammatory pathways. Moreover, mitochondrial failure impacts cellular signaling, which in turn affects the expression of molecules that promote inflammation. In addition, mitochondria have a crucial role in controlling the behavior of immune cells, such as their activation and differentiation, which is essential in the development of inflammatory lung diseases. Their dynamic behavior, encompassing fusion, fission, and mitophagy, also impacts cellular responses to inflammation and oxidative stress. Gaining a comprehensive understanding of the intricate correlation between mitochondria and lung inflammation is essential in order to develop accurate treatment strategies. Targeting ROS generation, dynamics, and mitochondrial function may offer novel approaches to treating inflammatory lung diseases while minimizing tissue damage. Additional investigation into the precise contributions of mitochondria to lung inflammation will provide significant knowledge regarding disease mechanisms and potential therapeutic approaches. This review will focus on how mitochondria in the lung regulate these processes and their involvement in acute and chronic lung diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.