DJ-1 was recently reported to mediate the cardioprotection of delayed hypoxic preconditioning (DHP) by suppressing hypoxia/reoxygenation (H/R)-induced oxidative stress, but its mechanism against H/R-induced oxidative stress during DHP is not fully elucidated. Here, using the well-established cellular model of DHP, we again found that DHP significantly improved cell viability and reduced lactate dehydrogenase release with concurrently up-regulated DJ-1 protein expression in H9c2 cells subjected to H/R. Importantly, DHP efficiently improved mitochondrial complex I activity following H/R and attenuated H/R-induced mitochondrial reactive oxygen species (ROS) generation and subsequent oxidative stress, as demonstrated by a much smaller decrease in reduced glutathione/oxidized glutathione ratio and a much smaller increase in intracellular ROS and malondialdehyde contents than that observed for the H/R group. However, the aforementioned effects of DHP were antagonized by DJ-1 knockdown with short hairpin RNA but mimicked by DJ-1 overexpression. Intriguingly, pharmacological inhibition of mitochondria complex I with Rotenone attenuated all the protective effects caused by DHP and DJ-1 overexpression, including maintenance of mitochondria complex I and suppression of mitochondrial ROS generation and subsequent oxidative stress. Taken together, this work revealed that preserving mitochondrial complex I activity and subsequently inhibiting mitochondrial ROS generation could be a novel mechanism by which DJ-1 mediates the cardioprotection of DHP against H/R-induced oxidative stress damage.