Ikaros family zinc finger 1(IKZF1) encodes a lymphoid-restricted zinc finger transcription factor named Ikaros that regulates lymphocyte differentiation and proliferation as well as self-tolerance. Increasing evidence indicates that IKZF1 could contribute to the pathogenesis of autoimmune diseases. Recent research has provided evidence that IKZF1 might correlate with Systemic lupus erythematosus (SLE), but no clear definition has been made yet. In this study, we focus on the relationship between IKZF1 polymorphisms and SLE susceptibility, cytokine levels, and clinical characteristics in the Chinese Han population.
One thousand seventy-six subjects, including 400 SLE patients and 676 healthy controls, were included in this study. Three single nucleotide polymorphisms within IKZF1 containing rs4917014, rs11980379, and rs4132601 were genotyped in all subjects by an improved multiplex ligation detection reaction technique. 143 subjects from SLE patients were randomly selected for testing the levels of serum cytokines. The clinical characteristics of SLE patients were gathered and collated from medical records. The data were analyzed mainly using SPSS20.0 (SPSS lnc., Chicago, IL).
Significant relationships were observed between rs4132601 and SLE susceptibility, CD40 ligand, and malar rash (
P
< .001,
P
= .04, and
P
= .01, respectively). In addition, significant relationships were observed between rs4917014 and susceptibility, granzyme B level, and hematological disorder in SLE (
P
= .005,
P
= .03 and
P
= .005, respectively).
The results further support that IKZF1 may have an important role in the development and pathogenesis of SLE. Allele G of rs4132601 and rs4917014 is related to a decreased risk of SLE occurrence and associated with clinical features in SLE patients, including CD40 ligand level, granzyme B level, malar rash, and hematological disorder, which play important roles in disease progression.