A super high-resolution simulation of the 6 May 2012 Tsukuba supercell tornado with a horizontal grid spacing of 10 m is conducted to investigate its fine-scale structure under realistic environmental conditions including surface friction. The simulated tornado repeatedly exhibits evolutions from one-cell to two-cell vortex, and subsequently to a multiple-vortex structure, where the vortex structure is sensitive to a swirl ratio. Subvortices in the multiple-vortex structure are located on the immediate inside of the radius of the maximum tangential wind speed, and cyclonically rotate around the tornado center with a slower speed less than half of the maximum tangential wind speed. The subvortices have a feature of a suction vortex accompanied by strong horizontal convergence and strong updraft near the surface. Although a superposition of the swirling winds associated with the subvortices and the parent tornado vortex causes locally intensified winds, the maximum horizontal and upward winds over the tornado's lifetime occur at the stage of shrinking of the vortex radius right before a transition to a multiple-vortex structure.(Citation: Mashiko, W., and H. Niino, 2017: Super highresolution simulation of the 6 May 2012 Tsukuba supercell tornado: Near-surface structure and its evolution. SOLA, 13, 135− 139,