Rationale
In cardiomyocytes from failing hearts, insufficient mitochondrial Ca2+ ([Ca2+]m) accumulation secondary to cytoplasmic Na+ overload decreases NAD(P)H/NAD(P)+ redox potential and increases oxidative stress when workload increases. These effects are abolished by enhancing [Ca2+]m with acute treatment with CGP-37157 (CGP), an inhibitor of the mitochondrial Na+/Ca2+ exchanger.
Objective
To determine if chronic CGP treatment mitigates contractile dysfunction and arrhythmias in an animal model of heart failure (HF) and sudden cardiac death (SCD).
Methods and Results
Here, we describe a novel guinea-pig HF/SCD model employing aortic constriction combined with daily β-adrenergic receptor stimulation (ACi) and show that chronic CGP treatment (ACi+CGP) attenuates cardiac hypertrophic remodeling, pulmonary edema, and interstitial fibrosis and prevents cardiac dysfunction and SCD. In the ACi group 4 weeks after pressure-overload, fractional shortening and the rate of left ventricular pressure development decreased by 36% and 32%, respectively, compared to sham-operated controls; in contrast, cardiac function was completely preserved in the ACi+CGP group. CGP treatment also significantly reduced the incidence of premature ventricular beats and prevented fatal episodes of ventricular fibrillation, but did not prevent QT prolongation. Without CGP treatment, mortality was 61% in the ACi group within 4 weeks of aortic constriction, while the death rate in the ACi+CGP group was not different from sham-operated animals.
Conclusions
The findings demonstrate the critical role played by altered mitochondrial Ca2+ dynamics in the development of HF and HF-associated SCD; moreover, they reveal a novel strategy for treating SCD and cardiac decompensation in HF.