A subpopulation of astrocytes on the brain’s surface, known as subpial astrocytes, constitutes the “glia limitans superficialis” (GLS), which is an interface between the brain parenchyma and the cerebrospinal fluid (CSF) in the subpial space. Changes in connexin-43 (Cx43) and aquaporin-4 (AQP4) proteins in subpial astrocytes were examined in the medial prefrontal cortex at postoperative day 1, 3, 7, 14, and 21 after sham operation and sciatic nerve compression (SNC). In addition, we tested the altered uptake of TRITC-conjugated 3 kDa dextran by reactive subpial astrocytes. Cellular immunofluorescence (IF) detection and image analysis were used to examine changes in Cx43 and AQP4 protein levels, as well as TRITC-conjugated 3 kDa dextran, in subpial astrocytes. The intensity of Cx43-IF was significantly increased, but AQP4-IF decreased in subpial astrocytes of sham- and SNC-operated rats during all survival periods compared to naïve controls. Similarly, the uptake of 3 kDa dextran in the GLS was reduced following both sham and SNC operations. The results suggest that both sciatic nerve injury and peripheral tissue injury alone can induce changes in subpial astrocytes related to the spread of their reactivity across the cortical surface mediated by increased amounts of gap junctions. At the same time, water transport and solute uptake were impaired in subpial astrocytes.