Solid state reactions between a thin film (133 nm) of Zr and bulk single crystalline 6H-SiC substrates have been studied at temperatures between 600 °C and 850 °C for durations of 30, 60 and 120 min under high vacuum conditions. The deposited film and reaction zones were investigated by Rutherford backscattering spectrometry (RBS) and X-ray diffraction. The RBS spectra were simulated in order to obtain the deposited layer thickness, reaction zone compositions and reaction zone thickness. The as-deposited spectra fit well with those annealed at 600 °C, thus showing there were no reactions taking place. At temperatures of 700 °C and above, Zr reacted with the SiC substrate and formed a mixed layer of Zr carbide (ZrC x ) and Zr silicides (ZrSi, Zr 2 Si and Zr 5 Si 3 ). Annealing at 850 °C for 240 min revealed that all the deposited Zr had completely reacted. The interface reaction follows the parabolic growth law thereby indicating diffusion controlled reaction kinetics. The activation energy for the diffusion process obtained was 1.6 eV in the relatively narrow temperature range 700-850 °C.