In normal hearing, complex tones with pitch-related periodic envelope modulations are far less effective maskers of speech than aperiodic noise. Here, it is shown that this is diminished in noise-vocoder simulations of cochlear implants (CIs) and further reduced with real CIs. Nevertheless, both listener groups still benefitted significantly from masker periodicity, despite the lack of salient spectral pitch cues. The main reason for the smaller effect observed in CI users is thought to be an even stronger channel interaction than in the CI simulations, which smears out the random envelope modulations that are characteristic for aperiodic sounds. In contrast, neither interferers that were amplitude-modulated at a rate of 10 Hz nor maskers with envelopes specifically designed to reveal the target speech enabled a masking release in CI users. Hence, even at the high signal-to-noise ratios at which they were tested, CI users can still exploit pitch cues transmitted by the temporal envelope of a non-speech masker, whereas slow amplitude modulations of the masker envelope are no longer helpful.